it-roy-ru.com

Как мне достичь теоретического максимума 4 FLOP за цикл?

Как достичь теоретической пиковой производительности 4 операций с плавающей запятой (двойной точности) за такт на современном процессоре Intel x86-64?

Насколько я понимаю, для выполнения большинства современных процессоров Intel требуется три цикла для SSEadd и пять циклов для mul (см., Например, таблицы инструкций Agner Fog ') ' ). Благодаря конвейерной обработке можно получить пропускную способность, равную одному add за цикл, если алгоритм имеет как минимум три независимых суммирования. Так как это верно для упакованных addpd, а также скалярных addsd версий и SSE регистров может содержать два double, пропускная способность может достигать двух флопов за цикл.

Кроме того, кажется (хотя я не видел надлежащей документации по этому вопросу) add и mul могут выполняться параллельно, давая теоретическую максимальную пропускную способность в четыре флопа за такт.

Однако я не смог воспроизвести эту производительность с помощью простой программы на C/C++. Моя лучшая попытка привела к примерно 2,7 флопс/цикл. Если кто-то может предложить простую C/C++ или ассемблерную программу, которая демонстрирует пиковую производительность, это было бы очень признательно.

Моя попытка:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>

double stoptime(void) {
   struct timeval t;
   gettimeofday(&t,NULL);
   return (double) t.tv_sec + t.tv_usec/1000000.0;
}

double addmul(double add, double mul, int ops){
   // Need to initialise differently otherwise compiler might optimise away
   double sum1=0.1, sum2=-0.1, sum3=0.2, sum4=-0.2, sum5=0.0;
   double mul1=1.0, mul2= 1.1, mul3=1.2, mul4= 1.3, mul5=1.4;
   int loops=ops/10;          // We have 10 floating point operations inside the loop
   double expected = 5.0*add*loops + (sum1+sum2+sum3+sum4+sum5)
               + pow(mul,loops)*(mul1+mul2+mul3+mul4+mul5);

   for (int i=0; i<loops; i++) {
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
   }
   return  sum1+sum2+sum3+sum4+sum5+mul1+mul2+mul3+mul4+mul5 - expected;
}

int main(int argc, char** argv) {
   if (argc != 2) {
      printf("usage: %s <num>\n", argv[0]);
      printf("number of operations: <num> millions\n");
      exit(EXIT_FAILURE);
   }
   int n = atoi(argv[1]) * 1000000;
   if (n<=0)
       n=1000;

   double x = M_PI;
   double y = 1.0 + 1e-8;
   double t = stoptime();
   x = addmul(x, y, n);
   t = stoptime() - t;
   printf("addmul:\t %.3f s, %.3f Gflops, res=%f\n", t, (double)n/t/1e9, x);
   return EXIT_SUCCESS;
}

Составлено с

g++ -O2 -march=native addmul.cpp ; ./a.out 1000

выдает следующий вывод на Intel Core i5-750, 2,66 ГГц.

addmul:  0.270 s, 3.707 Gflops, res=1.326463

То есть примерно 1,4 флопа за цикл. Глядя на код ассемблера с g++ -S -O2 -march=native -masm=intel addmul.cpp, основной цикл кажется мне оптимальным:

.L4:
inc    eax
mulsd    xmm8, xmm3
mulsd    xmm7, xmm3
mulsd    xmm6, xmm3
mulsd    xmm5, xmm3
mulsd    xmm1, xmm3
addsd    xmm13, xmm2
addsd    xmm12, xmm2
addsd    xmm11, xmm2
addsd    xmm10, xmm2
addsd    xmm9, xmm2
cmp    eax, ebx
jne    .L4

Изменение скалярных версий с упакованными версиями (addpd и mulpd) удвоило бы количество флопов без изменения времени выполнения, и поэтому мне хватило бы всего 2,8 флопов за цикл. Есть ли простой пример, который достигает четырех флопов за цикл?

Хорошая маленькая программа от Mysticial; Вот мои результаты (хотя бы на несколько секунд):

  • gcc -O2 -march=nocona: 5,6 Gflops из 10,66 Gflops (2,1 флоп/цикл)
  • cl /O2, openmp удалено: 10,1 Гфлоп из 10,66 Гфлоп (3,8 Флоп/цикл)

Все это кажется немного сложным, но мои выводы пока:

  • gcc -O2 изменяет порядок независимых операций с плавающей запятой с целью чередования addpd и mulpd, если это возможно. То же относится и к gcc-4.6.2 -O2 -march=core2.

  • gcc -O2 -march=nocona, похоже, сохраняет порядок операций с плавающей запятой, как определено в источнике C++.

  • cl /O2, 64-битный компилятор из SDK для Windows 7 выполняет автоматическое развертывание цикла и, похоже, пытается упорядочить операции так, чтобы группы из трех addpd чередовались с тремя mulpd (ну, по крайней мере, в моей системе и для моей простой программы).

  • My Core i5 75 ( архитектура Nehalem ) не любит чередование add и mul и, похоже, не может выполнять обе операции параллельно. Тем не менее, если сгруппированы в 3-х, это вдруг работает как магия.

  • Другие архитектуры (возможно, Sandy Bridge и другие), по-видимому, могут выполнять add/mul параллельно без проблем, если они чередуются в коде сборки.

  • Хотя это трудно признать, но в моей системе cl /O2 гораздо лучше справляется с низкоуровневыми операциями оптимизации для моей системы и достигает почти максимальной производительности для небольшого примера C++, описанного выше. Я измерял между 1,85-2,01 флопс/цикл (использовал clock () в Windows, что не так точно. Я думаю, нужно использовать лучший таймер - спасибо Mackie Messer).

  • Лучшее, с чем мне удалось справиться с gcc, - это вручную развернуть цикл и развернуть сложения и умножения в группах по три. С g++ -O2 -march=nocona addmul_unroll.cpp я получаю в лучшем случае 0.207s, 4.825 Gflops, что соответствует 1,8 флопс/цикл, что меня вполне устраивает сейчас.

В коде C++ я заменил цикл for на

   for (int i=0; i<loops/3; i++) {
       mul1*=mul; mul2*=mul; mul3*=mul;
       sum1+=add; sum2+=add; sum3+=add;
       mul4*=mul; mul5*=mul; mul1*=mul;
       sum4+=add; sum5+=add; sum1+=add;

       mul2*=mul; mul3*=mul; mul4*=mul;
       sum2+=add; sum3+=add; sum4+=add;
       mul5*=mul; mul1*=mul; mul2*=mul;
       sum5+=add; sum1+=add; sum2+=add;

       mul3*=mul; mul4*=mul; mul5*=mul;
       sum3+=add; sum4+=add; sum5+=add;
   }

И сейчас сборка выглядит так

.L4:
mulsd    xmm8, xmm3
mulsd    xmm7, xmm3
mulsd    xmm6, xmm3
addsd    xmm13, xmm2
addsd    xmm12, xmm2
addsd    xmm11, xmm2
mulsd    xmm5, xmm3
mulsd    xmm1, xmm3
mulsd    xmm8, xmm3
addsd    xmm10, xmm2
addsd    xmm9, xmm2
addsd    xmm13, xmm2
...
600
user1059432

Я выполнил эту задачу раньше. Но это было главным образом для измерения энергопотребления и температуры процессора. Следующий код (который довольно длинный) достигает почти оптимального уровня на моем Core i7 2600K.

Ключевым моментом, который следует здесь отметить, является огромное количество ручного развертывания циклов, а также чередования умножений и добавлений ...

Полный проект можно найти на моем GitHub: https://github.com/Mysticial/Flops

Предупреждение:

Если вы решили скомпилировать и запустить это, обратите внимание на температуру вашего процессора !!!
Убедитесь, что вы не перегреваете его. И убедитесь, что удушение процессора не влияет на ваши результаты!

Кроме того, я не несу ответственности за любой ущерб, который может возникнуть в результате выполнения этого кода.

Примечания:

  • Этот код оптимизирован для x64. x86 не имеет достаточно регистров для этого, чтобы хорошо скомпилировать.
  • Этот код был протестирован для правильной работы в Visual Studio 2010/2012 и GCC 4.6.
    ICC 11 (Intel Compiler 11) неожиданно испытывает проблемы с хорошей компиляцией.
  • Они предназначены для процессоров до FMA. Чтобы достичь пика FLOPS на процессорах Intel Haswell и AMD Bulldozer (и более поздних), потребуются инструкции FMA (Fused Multiply Add). Это выходит за рамки этого теста.
#include <emmintrin.h>
#include <omp.h>
#include <iostream>
using namespace std;

typedef unsigned long long uint64;

double test_dp_mac_SSE(double x,double y,uint64 iterations){
    register __m128d r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,rB,rC,rD,rE,rF;

    //  Generate starting data.
    r0 = _mm_set1_pd(x);
    r1 = _mm_set1_pd(y);

    r8 = _mm_set1_pd(-0.0);

    r2 = _mm_xor_pd(r0,r8);
    r3 = _mm_or_pd(r0,r8);
    r4 = _mm_andnot_pd(r8,r0);
    r5 = _mm_mul_pd(r1,_mm_set1_pd(0.37796447300922722721));
    r6 = _mm_mul_pd(r1,_mm_set1_pd(0.24253562503633297352));
    r7 = _mm_mul_pd(r1,_mm_set1_pd(4.1231056256176605498));
    r8 = _mm_add_pd(r0,_mm_set1_pd(0.37796447300922722721));
    r9 = _mm_add_pd(r1,_mm_set1_pd(0.24253562503633297352));
    rA = _mm_sub_pd(r0,_mm_set1_pd(4.1231056256176605498));
    rB = _mm_sub_pd(r1,_mm_set1_pd(4.1231056256176605498));

    rC = _mm_set1_pd(1.4142135623730950488);
    rD = _mm_set1_pd(1.7320508075688772935);
    rE = _mm_set1_pd(0.57735026918962576451);
    rF = _mm_set1_pd(0.70710678118654752440);

    uint64 iMASK = 0x800fffffffffffffull;
    __m128d MASK = _mm_set1_pd(*(double*)&iMASK);
    __m128d vONE = _mm_set1_pd(1.0);

    uint64 c = 0;
    while (c < iterations){
        size_t i = 0;
        while (i < 1000){
            //  Here's the meat - the part that really matters.

            r0 = _mm_mul_pd(r0,rC);
            r1 = _mm_add_pd(r1,rD);
            r2 = _mm_mul_pd(r2,rE);
            r3 = _mm_sub_pd(r3,rF);
            r4 = _mm_mul_pd(r4,rC);
            r5 = _mm_add_pd(r5,rD);
            r6 = _mm_mul_pd(r6,rE);
            r7 = _mm_sub_pd(r7,rF);
            r8 = _mm_mul_pd(r8,rC);
            r9 = _mm_add_pd(r9,rD);
            rA = _mm_mul_pd(rA,rE);
            rB = _mm_sub_pd(rB,rF);

            r0 = _mm_add_pd(r0,rF);
            r1 = _mm_mul_pd(r1,rE);
            r2 = _mm_sub_pd(r2,rD);
            r3 = _mm_mul_pd(r3,rC);
            r4 = _mm_add_pd(r4,rF);
            r5 = _mm_mul_pd(r5,rE);
            r6 = _mm_sub_pd(r6,rD);
            r7 = _mm_mul_pd(r7,rC);
            r8 = _mm_add_pd(r8,rF);
            r9 = _mm_mul_pd(r9,rE);
            rA = _mm_sub_pd(rA,rD);
            rB = _mm_mul_pd(rB,rC);

            r0 = _mm_mul_pd(r0,rC);
            r1 = _mm_add_pd(r1,rD);
            r2 = _mm_mul_pd(r2,rE);
            r3 = _mm_sub_pd(r3,rF);
            r4 = _mm_mul_pd(r4,rC);
            r5 = _mm_add_pd(r5,rD);
            r6 = _mm_mul_pd(r6,rE);
            r7 = _mm_sub_pd(r7,rF);
            r8 = _mm_mul_pd(r8,rC);
            r9 = _mm_add_pd(r9,rD);
            rA = _mm_mul_pd(rA,rE);
            rB = _mm_sub_pd(rB,rF);

            r0 = _mm_add_pd(r0,rF);
            r1 = _mm_mul_pd(r1,rE);
            r2 = _mm_sub_pd(r2,rD);
            r3 = _mm_mul_pd(r3,rC);
            r4 = _mm_add_pd(r4,rF);
            r5 = _mm_mul_pd(r5,rE);
            r6 = _mm_sub_pd(r6,rD);
            r7 = _mm_mul_pd(r7,rC);
            r8 = _mm_add_pd(r8,rF);
            r9 = _mm_mul_pd(r9,rE);
            rA = _mm_sub_pd(rA,rD);
            rB = _mm_mul_pd(rB,rC);

            i++;
        }

        //  Need to renormalize to prevent denormal/overflow.
        r0 = _mm_and_pd(r0,MASK);
        r1 = _mm_and_pd(r1,MASK);
        r2 = _mm_and_pd(r2,MASK);
        r3 = _mm_and_pd(r3,MASK);
        r4 = _mm_and_pd(r4,MASK);
        r5 = _mm_and_pd(r5,MASK);
        r6 = _mm_and_pd(r6,MASK);
        r7 = _mm_and_pd(r7,MASK);
        r8 = _mm_and_pd(r8,MASK);
        r9 = _mm_and_pd(r9,MASK);
        rA = _mm_and_pd(rA,MASK);
        rB = _mm_and_pd(rB,MASK);
        r0 = _mm_or_pd(r0,vONE);
        r1 = _mm_or_pd(r1,vONE);
        r2 = _mm_or_pd(r2,vONE);
        r3 = _mm_or_pd(r3,vONE);
        r4 = _mm_or_pd(r4,vONE);
        r5 = _mm_or_pd(r5,vONE);
        r6 = _mm_or_pd(r6,vONE);
        r7 = _mm_or_pd(r7,vONE);
        r8 = _mm_or_pd(r8,vONE);
        r9 = _mm_or_pd(r9,vONE);
        rA = _mm_or_pd(rA,vONE);
        rB = _mm_or_pd(rB,vONE);

        c++;
    }

    r0 = _mm_add_pd(r0,r1);
    r2 = _mm_add_pd(r2,r3);
    r4 = _mm_add_pd(r4,r5);
    r6 = _mm_add_pd(r6,r7);
    r8 = _mm_add_pd(r8,r9);
    rA = _mm_add_pd(rA,rB);

    r0 = _mm_add_pd(r0,r2);
    r4 = _mm_add_pd(r4,r6);
    r8 = _mm_add_pd(r8,rA);

    r0 = _mm_add_pd(r0,r4);
    r0 = _mm_add_pd(r0,r8);


    //  Prevent Dead Code Elimination
    double out = 0;
    __m128d temp = r0;
    out += ((double*)&temp)[0];
    out += ((double*)&temp)[1];

    return out;
}

void test_dp_mac_SSE(int tds,uint64 iterations){

    double *sum = (double*)malloc(tds * sizeof(double));
    double start = omp_get_wtime();

#pragma omp parallel num_threads(tds)
    {
        double ret = test_dp_mac_SSE(1.1,2.1,iterations);
        sum[omp_get_thread_num()] = ret;
    }

    double secs = omp_get_wtime() - start;
    uint64 ops = 48 * 1000 * iterations * tds * 2;
    cout << "Seconds = " << secs << endl;
    cout << "FP Ops  = " << ops << endl;
    cout << "FLOPs   = " << ops / secs << endl;

    double out = 0;
    int c = 0;
    while (c < tds){
        out += sum[c++];
    }

    cout << "sum = " << out << endl;
    cout << endl;

    free(sum);
}

int main(){
    //  (threads, iterations)
    test_dp_mac_SSE(8,10000000);

    system("pause");
}

Вывод (1 поток, 10000000 итераций) - скомпилировано с Visual Studio 2010 SP1 - выпуск x64:

Seconds = 55.5104
FP Ops  = 960000000000
FLOPs   = 1.7294e+010
sum = 2.22652

Машина Core i7 2600K @ 4,4 ГГц. Теоретический SSE пик составляет 4 флопа * 4,4 ГГц = 17,6 Гфлопс . Этот код достигает 17,3 GFlops - неплохо.

Вывод (8 потоков, 10000000 итераций) - Скомпилировано с Visual Studio 2010 SP1 - Выпуск x64:

Seconds = 117.202
FP Ops  = 7680000000000
FLOPs   = 6.55279e+010
sum = 17.8122

Теоретический SSE пик составляет 4 флопа * 4 ядра * 4,4 ГГц = 70,4 Гфлопс. Фактическое значение равно 65,5 GFlops .


Давайте сделаем еще один шаг вперед. AVX ...

#include <immintrin.h>
#include <omp.h>
#include <iostream>
using namespace std;

typedef unsigned long long uint64;

double test_dp_mac_AVX(double x,double y,uint64 iterations){
    register __m256d r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,rB,rC,rD,rE,rF;

    //  Generate starting data.
    r0 = _mm256_set1_pd(x);
    r1 = _mm256_set1_pd(y);

    r8 = _mm256_set1_pd(-0.0);

    r2 = _mm256_xor_pd(r0,r8);
    r3 = _mm256_or_pd(r0,r8);
    r4 = _mm256_andnot_pd(r8,r0);
    r5 = _mm256_mul_pd(r1,_mm256_set1_pd(0.37796447300922722721));
    r6 = _mm256_mul_pd(r1,_mm256_set1_pd(0.24253562503633297352));
    r7 = _mm256_mul_pd(r1,_mm256_set1_pd(4.1231056256176605498));
    r8 = _mm256_add_pd(r0,_mm256_set1_pd(0.37796447300922722721));
    r9 = _mm256_add_pd(r1,_mm256_set1_pd(0.24253562503633297352));
    rA = _mm256_sub_pd(r0,_mm256_set1_pd(4.1231056256176605498));
    rB = _mm256_sub_pd(r1,_mm256_set1_pd(4.1231056256176605498));

    rC = _mm256_set1_pd(1.4142135623730950488);
    rD = _mm256_set1_pd(1.7320508075688772935);
    rE = _mm256_set1_pd(0.57735026918962576451);
    rF = _mm256_set1_pd(0.70710678118654752440);

    uint64 iMASK = 0x800fffffffffffffull;
    __m256d MASK = _mm256_set1_pd(*(double*)&iMASK);
    __m256d vONE = _mm256_set1_pd(1.0);

    uint64 c = 0;
    while (c < iterations){
        size_t i = 0;
        while (i < 1000){
            //  Here's the meat - the part that really matters.

            r0 = _mm256_mul_pd(r0,rC);
            r1 = _mm256_add_pd(r1,rD);
            r2 = _mm256_mul_pd(r2,rE);
            r3 = _mm256_sub_pd(r3,rF);
            r4 = _mm256_mul_pd(r4,rC);
            r5 = _mm256_add_pd(r5,rD);
            r6 = _mm256_mul_pd(r6,rE);
            r7 = _mm256_sub_pd(r7,rF);
            r8 = _mm256_mul_pd(r8,rC);
            r9 = _mm256_add_pd(r9,rD);
            rA = _mm256_mul_pd(rA,rE);
            rB = _mm256_sub_pd(rB,rF);

            r0 = _mm256_add_pd(r0,rF);
            r1 = _mm256_mul_pd(r1,rE);
            r2 = _mm256_sub_pd(r2,rD);
            r3 = _mm256_mul_pd(r3,rC);
            r4 = _mm256_add_pd(r4,rF);
            r5 = _mm256_mul_pd(r5,rE);
            r6 = _mm256_sub_pd(r6,rD);
            r7 = _mm256_mul_pd(r7,rC);
            r8 = _mm256_add_pd(r8,rF);
            r9 = _mm256_mul_pd(r9,rE);
            rA = _mm256_sub_pd(rA,rD);
            rB = _mm256_mul_pd(rB,rC);

            r0 = _mm256_mul_pd(r0,rC);
            r1 = _mm256_add_pd(r1,rD);
            r2 = _mm256_mul_pd(r2,rE);
            r3 = _mm256_sub_pd(r3,rF);
            r4 = _mm256_mul_pd(r4,rC);
            r5 = _mm256_add_pd(r5,rD);
            r6 = _mm256_mul_pd(r6,rE);
            r7 = _mm256_sub_pd(r7,rF);
            r8 = _mm256_mul_pd(r8,rC);
            r9 = _mm256_add_pd(r9,rD);
            rA = _mm256_mul_pd(rA,rE);
            rB = _mm256_sub_pd(rB,rF);

            r0 = _mm256_add_pd(r0,rF);
            r1 = _mm256_mul_pd(r1,rE);
            r2 = _mm256_sub_pd(r2,rD);
            r3 = _mm256_mul_pd(r3,rC);
            r4 = _mm256_add_pd(r4,rF);
            r5 = _mm256_mul_pd(r5,rE);
            r6 = _mm256_sub_pd(r6,rD);
            r7 = _mm256_mul_pd(r7,rC);
            r8 = _mm256_add_pd(r8,rF);
            r9 = _mm256_mul_pd(r9,rE);
            rA = _mm256_sub_pd(rA,rD);
            rB = _mm256_mul_pd(rB,rC);

            i++;
        }

        //  Need to renormalize to prevent denormal/overflow.
        r0 = _mm256_and_pd(r0,MASK);
        r1 = _mm256_and_pd(r1,MASK);
        r2 = _mm256_and_pd(r2,MASK);
        r3 = _mm256_and_pd(r3,MASK);
        r4 = _mm256_and_pd(r4,MASK);
        r5 = _mm256_and_pd(r5,MASK);
        r6 = _mm256_and_pd(r6,MASK);
        r7 = _mm256_and_pd(r7,MASK);
        r8 = _mm256_and_pd(r8,MASK);
        r9 = _mm256_and_pd(r9,MASK);
        rA = _mm256_and_pd(rA,MASK);
        rB = _mm256_and_pd(rB,MASK);
        r0 = _mm256_or_pd(r0,vONE);
        r1 = _mm256_or_pd(r1,vONE);
        r2 = _mm256_or_pd(r2,vONE);
        r3 = _mm256_or_pd(r3,vONE);
        r4 = _mm256_or_pd(r4,vONE);
        r5 = _mm256_or_pd(r5,vONE);
        r6 = _mm256_or_pd(r6,vONE);
        r7 = _mm256_or_pd(r7,vONE);
        r8 = _mm256_or_pd(r8,vONE);
        r9 = _mm256_or_pd(r9,vONE);
        rA = _mm256_or_pd(rA,vONE);
        rB = _mm256_or_pd(rB,vONE);

        c++;
    }

    r0 = _mm256_add_pd(r0,r1);
    r2 = _mm256_add_pd(r2,r3);
    r4 = _mm256_add_pd(r4,r5);
    r6 = _mm256_add_pd(r6,r7);
    r8 = _mm256_add_pd(r8,r9);
    rA = _mm256_add_pd(rA,rB);

    r0 = _mm256_add_pd(r0,r2);
    r4 = _mm256_add_pd(r4,r6);
    r8 = _mm256_add_pd(r8,rA);

    r0 = _mm256_add_pd(r0,r4);
    r0 = _mm256_add_pd(r0,r8);

    //  Prevent Dead Code Elimination
    double out = 0;
    __m256d temp = r0;
    out += ((double*)&temp)[0];
    out += ((double*)&temp)[1];
    out += ((double*)&temp)[2];
    out += ((double*)&temp)[3];

    return out;
}

void test_dp_mac_AVX(int tds,uint64 iterations){

    double *sum = (double*)malloc(tds * sizeof(double));
    double start = omp_get_wtime();

#pragma omp parallel num_threads(tds)
    {
        double ret = test_dp_mac_AVX(1.1,2.1,iterations);
        sum[omp_get_thread_num()] = ret;
    }

    double secs = omp_get_wtime() - start;
    uint64 ops = 48 * 1000 * iterations * tds * 4;
    cout << "Seconds = " << secs << endl;
    cout << "FP Ops  = " << ops << endl;
    cout << "FLOPs   = " << ops / secs << endl;

    double out = 0;
    int c = 0;
    while (c < tds){
        out += sum[c++];
    }

    cout << "sum = " << out << endl;
    cout << endl;

    free(sum);
}

int main(){
    //  (threads, iterations)
    test_dp_mac_AVX(8,10000000);

    system("pause");
}

Вывод (1 поток, 10000000 итераций) - скомпилировано с Visual Studio 2010 SP1 - выпуск x64:

Seconds = 57.4679
FP Ops  = 1920000000000
FLOPs   = 3.34099e+010
sum = 4.45305

Теоретический пик AVX составляет 8 флопов * 4,4 ГГц = 35,2 Гфлопс . Фактическим является 33,4 GFlops .

Вывод (8 потоков, 10000000 итераций) - Скомпилировано с Visual Studio 2010 SP1 - Выпуск x64:

Seconds = 111.119
FP Ops  = 15360000000000
FLOPs   = 1.3823e+011
sum = 35.6244

Теоретический пик AVX составляет 8 флопов * 4 ядра * 4,4 ГГц = 140,8 Гфлопс. Фактическое значение 138,2 Гфлопс .


Теперь некоторые пояснения:

Критическая часть производительности - это, очевидно, 48 инструкций во внутреннем цикле. Вы заметите, что он разбит на 4 блока по 12 инструкций в каждом. Каждый из этих 12 блоков инструкций полностью независим друг от друга - для выполнения в среднем требуется 6 циклов.

Таким образом, существует 12 инструкций и 6 циклов между выпусками. Задержка умножения составляет 5 циклов, так что этого достаточно, чтобы избежать задержек задержки.

Шаг нормализации необходим, чтобы предотвратить переполнение/переполнение данных. Это необходимо, поскольку бесполезный код будет медленно увеличивать/уменьшать величину данных.

Так что на самом деле можно добиться большего, чем это, если вы просто используете все нули и избавляетесь от шага нормализации. Однако, поскольку я написал тест для измерения энергопотребления и температуры, я должен был убедиться, что на флопах были "реальные" данные, а не нули - поскольку исполнительные блоки вполне могут иметь специальную обработку случая для нулей, которые потребляют меньше энергии и производят меньше тепла.


Больше результатов:

  • Intel Core i7 920 @ 3,5 ГГц
  • Windows 7 Ultimate x64
  • Visual Studio 2010 SP1 - выпуск x64

Тем: 1

Seconds = 72.1116
FP Ops  = 960000000000
FLOPs   = 1.33127e+010
sum = 2.22652

Теоретический SSE Пик: 4 флопа * 3,5 ГГц = 14,0 Гфлопс . Фактическим является 13,3 GFlops .

Тем: 8

Seconds = 149.576
FP Ops  = 7680000000000
FLOPs   = 5.13452e+010
sum = 17.8122

Теоретический SSE Пик: 4 флопа * 4 ядра * 3,5 ГГц = 56,0 Гфлопс . Фактическим является 51,3 GFlops .

Моя температура процессора достигла 76C при многопоточном запуске! Если вы выполняете их, убедитесь, что на результаты не влияет регулирование ЦП.


  • 2 x Intel Xeon X5482 Harpertown @ 3,2 ГГц
  • Ubuntu Linux 10 x64
  • GCC 4.5.2 x64 - (-O2 -msse3 -fopenmp)

Тем: 1

Seconds = 78.3357
FP Ops  = 960000000000
FLOPs   = 1.22549e+10
sum = 2.22652

Теоретически SSE Пик: 4 флопа * 3,2 ГГц = 12,8 Гфлопс . Фактическим является 12,3 GFlops .

Тем: 8

Seconds = 78.4733
FP Ops  = 7680000000000
FLOPs   = 9.78676e+10
sum = 17.8122

Теоретически SSE Пик: 4 флопа * 8 ядер * 3,2 ГГц = 102,4 Гфлопс . Фактическим является 97,9 GFlops .

486
Mysticial

В архитектуре Intel есть один момент, о котором люди часто забывают: порты диспетчеризации разделяются между Int и FP/SIMD. Это означает, что вы получите только определенное количество пакетов FP/SIMD, прежде чем логика цикла создаст пузырьки в потоке с плавающей запятой. Mystical получил больше провалов из своего кода, потому что он использовал более длинные шаги в своем развернутом цикле.

Если вы посмотрите на архитектуру Nehalem/Sandy Bridge здесь http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=6 , то совершенно ясно, что происходит.

Напротив, должно быть проще достичь пиковой производительности на AMD (Bulldozer), поскольку каналы INT и FP/SIMD имеют отдельные порты выдачи с собственным планировщиком.

Это только теоретически, поскольку у меня нет ни одного из этих процессоров для тестирования.

30
Patrick Schlüter

Филиалы определенно могут удержать вас от поддержания максимальной теоретической производительности. Видите ли вы разницу, если вы выполняете ручное развертывание? Например, если вы добавили в 5 или 10 раз больше операций на цикл итерации:

for(int i=0; i<loops/5; i++) {
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
   }
16
TJD

Использование Intel ICC версии 11.1 на 2,4 ГГц Intel Core 2 Duo я получаю

Macintosh:~ mackie$ icc -O3 -mssse3 -oaddmul addmul.cc && ./addmul 1000
addmul:  0.105 s, 9.525 Gflops, res=0.000000
Macintosh:~ mackie$ icc -v
Version 11.1 

Это очень близко к идеальным 9,6 Гфлопс.

Правка:

Ой, глядя на ассемблерный код, кажется, что icc не только векторизовал умножение, но и вытащил дополнения из цикла. При навязывании более строгой семантики fp код больше не векторизован:

Macintosh:~ mackie$ icc -O3 -mssse3 -oaddmul addmul.cc -fp-model precise && ./addmul 1000
addmul:  0.516 s, 1.938 Gflops, res=1.326463

EDIT2:

Как просили:

Macintosh:~ mackie$ clang -O3 -mssse3 -oaddmul addmul.cc && ./addmul 1000
addmul:  0.209 s, 4.786 Gflops, res=1.326463
Macintosh:~ mackie$ clang -v
Apple clang version 3.0 (tags/Apple/clang-211.10.1) (based on LLVM 3.0svn)
Target: x86_64-Apple-darwin11.2.0
Thread model: posix

Внутренний цикл кода Clang выглядит следующим образом:

        .align  4, 0x90
LBB2_4:                                 ## =>This Inner Loop Header: Depth=1
        addsd   %xmm2, %xmm3
        addsd   %xmm2, %xmm14
        addsd   %xmm2, %xmm5
        addsd   %xmm2, %xmm1
        addsd   %xmm2, %xmm4
        mulsd   %xmm2, %xmm0
        mulsd   %xmm2, %xmm6
        mulsd   %xmm2, %xmm7
        mulsd   %xmm2, %xmm11
        mulsd   %xmm2, %xmm13
        incl    %eax
        cmpl    %r14d, %eax
        jl      LBB2_4

EDIT3:

Наконец, два предложения: во-первых, если вам нравится этот тип тестирования, рассмотрите возможность использования инструкции rdtsc вместо gettimeofday(2). Это намного точнее и обеспечивает время в циклах, что обычно в любом случае вас интересует. Для gcc и друзей вы можете определить это так:

#include <stdint.h>

static __inline__ uint64_t rdtsc(void)
{
        uint64_t rval;
        __asm__ volatile ("rdtsc" : "=A" (rval));
        return rval;
}

Во-вторых, вы должны запустить свою тестовую программу несколько раз и использовать только лучшая производительность. В современных операционных системах многие вещи происходят параллельно, процессор может находиться в режиме энергосбережения на низких частотах и ​​т.д. Повторное выполнение программы дает результат, который ближе к идеальному случаю.

7
Mackie Messer